УДК 633.521:631.811.98

DOI 10.30679/2587-9847-2023-37-170-172

ОЦЕНКА ПРИМЕНЕНИЯ БИОПРЕПАРАТОВ НА БЕЗОПАСНОСТЬ И КАЧЕСТВО МАСЛА ТЕХНИЧЕСКИХ КУЛЬТУР

Ефанова Е.М., Елисеев М.А.

Федеральное государственное бюджетное образовательное учреждение высшего образования «Российский государственный аграрный университет – MCXA имени К.А.Тимирязева» (Москва)

Реферам. В статье представлены исследования по изучению эффективности применения биорегулятора природного происхождения ($\Gamma\Phi K$) на урожайность и качества получаемой продукции технических культур. Был проведен сравнительный анализ жирнокислотного состава масел: льна масличного и технической конопли, и определение показателей качества полученного масла по таким показателям как кислотное ($K\Psi$) и перекисное ($\Pi\Psi$) числа.

Ключевые слова: биопрепараты, $\Gamma \Phi K$, технические культуры, лен масличный, техническая конопля, качество продукции.

Summary. The article presents studies on the effectiveness of the use of bioregulators of natural origin (HFC) on the yield capacity and quality of the products of technical crops. A comparative analysis of the fatty-acid composition of oils was carried out: oilseed flax and technical hemp, and the determination of the quality indicators of the resulting oil according to such indicators as acid (AN) and peroxide (PN) numbers.

Key words: biopreparations, HFC, technical crops, oilseed flax, technical hemp, product quality.

Введение. Повышение производительности и устойчивости сельского хозяйства должно стать приоритетом для увеличения производства продуктов питания. К основным задачам современного сельского хозяйства относятся высокая урожайность, экологичность, низкая себестоимость сельскохозяйственной продукции, повышение устойчивости растений к различным биотическим и абиотическим стрессам. Нестабильность полевых всходов представляет значительную угрозу для производства сельскохозяйственных культур, особенно во время засухи и неблагоприятных погодных условий [1].

Хорошо известно, что биотический и абиотический стресс не позволяет практически всем сельскохозяйственным системам реализовать свой потенциал урожайности. Абиотические стрессы можно предотвратить, оптимизируя условия роста растений и обеспечив их водой, питательными веществами и регуляторами роста растений (PPP — ауксины, цитокинины, гиббереллины, стриголактоны, брассиностероиды). Помимо этих традиционных подходов, биостимуляторы все чаще интегрируются в производственные системы с целью модификации физиологических процессов в растениях для оптимизации продуктивности. Биостимуляторы на основе природных материалов привлекли значительное внимание, как научного сообщества, так и коммерческих предприятий, особенно в последние два с половиной десятилетия [2, 3].

Для рационального решения этих вопросов одним из подходов является внедрение в агротехнологии выращивания новых биорегуляторов и защитно-стимулирующих комплексов природного происхождения [4-6].

Нами были проведены исследования по изучению эффективности применения биорегулятора природного происхождения на урожайность и качества получаемой продукции технических культур.

Объекты и методы исследовании. Объекты исследований: семена безнаркотической однодомной конопли среднерусского экотипа Сурская (репродукция семян ОС), семена льна масличного сорта Северный.

Гуминово-фульватный комплекс (ГФК)— биорегулятор на основе гуминовых и фульвокислот, разработанный на кафедре химии Российского государственного аграрного университета — МСХА имени К.А. Тимирязева. Данный препарат был получен нами щелочной экстракцией 0.1М раствором КОН из гумифицированной льняной костры, время экстракции составило 120 минут, гидромодуль — 1/10, температура экстракции — 85-90 °С. Гуминово-фульватный комплекс (ГФК) способствует ускорению созревания и увеличению качественных показателей урожая [7, 8].

Внекорневую подкормку растений технических культур проводили путем двукратного опрыскивания с интервалом 10 дней растений защитно-стимулирующим комплексом в фазе «ёлочки» у льна масличного и в фазу начала цветения растений — в фазу созревания семян у технической конопли, что способствовало созданию благоприятных условий для роста и развития растений в течение вегетации.

Обсуждение результатью. Результаты эксперимента показали, что при обработке растений льна масличного и технической конопли препаратом ГФК по всем показателям была выявлена положительная динамика. На посевах льна технической конопли: высота растений на 28 см, технической длины на 23 см, длина соцветий на 10 см, диаметр стебля на 2 мм больше относительно контроля. Семенная продуктивность увеличилась на 0,6 г/раст., а масса 1000 семян на 2,2-2,5 г. На посевах льна масличного: средняя высота растений больше на 3–6 см, чем на контрольных делянках, урожайность семян масличного льна при обработке препаратом увеличилась на 4,5 ц/га.

Также был определен выход масла после холодного отжима на прессе при температуре $60\,^{\circ}$ С. Относительно контроля выход конопляного масла составил на $4\,\%$ больше на фоне применение биорегуляторов, а выход льняного масла из семян увеличился на $10\text{-}15\,\%$ относительно контроля.

Важным является определить не только выход масла из семян, но и провести оценку соотношения насыщенных и ненасыщенных жирных кислот и содержание альфалиноленовой незаменимой жирной кислоты, что свидетельствует о качестве полученной продукции.

Обработка растений технической конопли биорегулятором ГФК способствовало уменьшению содержания насыщенных жирных кислот (пальметиновой и стеариновой) до 4-7%, и увеличению ненасыщенных жирных кислот до 16-50%, а также высокому содержанию линолевой кислоты до 50%.

В льняном масле, полученном из семян льна масличного, увеличивалась в вариантах с препаратами сумма ненасыщенных жирных кислот до 90,6-92,2 % относительно контроля 88,5 %, а также α -линоленовой кислоты повышалось в варианте с обработкой препаратом $\Gamma\Phi K$ до 63,1 % относительно контроля 55,3 %.

Также нами было проведено определение показателей качества полученного масла по таким показателям как кислотное (КЧ) и перекисное (ПЧ) числа.

Гидропероксиды — это основные первичные продукты окисления ненасыщенных жирных кислот. Перекисное число, характеризующее содержание в масле органических гидропероксидов, является одним из наиболее важных индикаторов качества масла при контроле степени его окисления [9].

Известно, что первичные продукты окисления растительных и животных жиров нестабильны и легко распадаются, трансформируясь во вторичные продукты окисления, которые представляют собой сложную группу соединений, включающую различные альдегиды и кетоны, углеводороды, эпоксисоединения, сравнительно устойчивые спирты, кислоты, оксикислоты и другие [10].

Альдегиды и кетоны придают жирам неприятный вкус, запах и обладают высокой токсичностью. Следует отметить, что, хотя обычно для пищевых растительных масел

допустимой считается величина ПЧ, не превышающая 10 мг-экв O_2 /кг, изменение вкуса (прогоркание) и запаха высоконенасыщенного льняного масла начинается обычно при значениях ПЧ меньше 3-5 мг-экв O_2 /кг масла. Величины кислотного числа (КЧ), характеризующего содержание свободных жирных кислот, не должна превышать 2 мг КОН / г масла [11,12].

Выводы. Все варианты соответствовали стандарту качества. Показатели КЧ и ПЧ со значением менее 2 относят к качественному маслу.

Литература

- 1. Жарких О.А., Дмитревская И.И., Белопухов С.Л., Белопухова Ю.Б. О перспективах производства агроконопли // Мелиорация почв для устойчивого развития сельского хозяйства. Материалы Международной научно-практической конференции, посвящённой 100-летию со дня рождения профессора Александра Филипповича Тимофеева. 2019. С. 77-80.
- 2. Дмитревская И.И., Жарких О.А., Белопухов С.Л. Льноводство и коноплеводство приоритетные направления в растениеводстве // Аграрная наука сельскому хозяйству. Сборник материалов XV Международной научно-практической конференции. В 2-х книгах. Барнаул. 2020. С. 191-192.
- 3. Калабашкина Е. В. Влияние биорегуляторов на урожайность, химические и физикомеханические характеристики волокна и семян льна-долгунца, выращиваемого в ЦРНЗ РФ: дис. канд. с.-х. наук: 06.01.01 / Калабашкина Елена Владимировна. М., 2014. 158 с.
- 4. Дмитревская И.И., Серков В.А., Жарких О.А., Белопухов С.Л., Белопухова Ю.Б. Опыт использования защитно-стимулирующего комплекса в коноплеводстве // Инновации в научно-техническом обеспечении агропромышленного комплекса России. Материалы Всероссийской (национальной) научно-практической конференции. Курск. 2020. С. 70-73.
- 5. Белопухов С.Л., Байбеков Р.Ф., Серков В.А., Жарких О.А., Дмитревская И.И. Применение метода термического анализа для оценки показателей качества волокна конопли при использовании в агротехнологиях защитно-стимулирующих комплексов // АгроЭкоИнфо. 2019. № 4 (38). С. 38.
- 6. Говоркова С.Б., Цымбалова В.А., Тучкина Ю.В., Калабашкина Е.В., Гафуров Р.М. Изучение новых регуляторов роста растений с ретардантными свойствами на озимой пшенице // Агрохимический вестник. 2019. № 1. С. 56-58.
- 7. Калабашкина Е.В., Белопухов С.Л., Дмитревская И.И. Влияние физиологически активных веществ на рост и развитие льна-долгунца // Достижения науки и техники АПК. 2012. № 3. С. 21-23.
- 8. Жарких О.А., Дмитревская И.И. О перспективах выращивания агроконопли в Сибири // Аграрная наука сельскому хозяйству. Сборник материалов XIV Международной научнопрактическая конференции. В 2-х книгах. 2019. С. 321-323.
- 9. Ущаповский И.В., Дмитревская И.И., Белопухов С.Л., Мазиров М.А. Применение защитно-стимулирующего комплекса "ГФК" при возделывании льна // Земледелие. 2016. № 1. С. 29-31.
- 10. Белопухов С.Л., Барыкина Ю.А., Федяев В.В., Жарких О.А., Дмитревская И.И. Мелиоранты из отходов льняного комплекса // Природообустройство. 2019. № 2. С. 28-33.
- 11. Жарких О.А., Дмитревская И.И., Белопухов С.Л. Применение новых хелатных препаратов на льне масличном // Известия Тимирязевской сельскохозяйственной академии. 2021. № 4. С. 30-40.
- 12. Жарких О.А, Экологическая оценка применения биорегуляторов Циркон и Экофус на повышение урожайности и качества продукции льна-долгунца и льна масличного // Современные аспекты производства и переработки сельскохозяйственной продукции. Сборник статей по материалам IV научно-практической конференции студентов, аспирантов и молодых ученых. Ответственный за выпуск А.А. Нестеренко. 2018. С. 498-500.